Recurrent Relational Networks for Complex Relational Reasoning
نویسندگان
چکیده
Humans possess an ability to abstractly reason about objects and their interactions, an ability not shared with state-of-the-art deep learning models. Relational networks, introduced by Santoro et al. (2017), add the capacity for relational reasoning to deep neural networks, but are limited in the complexity of the reasoning tasks they can address. We introduce recurrent relational networks which increase the suite of solvable tasks to those that require an order of magnitude more steps of relational reasoning. We use recurrent relational networks to solve Sudoku puzzles and achieve state-of-the-art results by solving 96.6% of the hardest Sudoku puzzles, where relational networks fail to solve any. We also apply our model to the BaBi textual QA dataset solving 19/20 tasks which is competitive with stateof-the-art sparse differentiable neural computers. The recurrent relational network is a general purpose module that can augment any neural network model with the capacity to do many-step relational reasoning.
منابع مشابه
A simple neural network module for relational reasoning
Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset...
متن کاملProbabilistic Backward and Forward Reasoning in Stochastic Relational Worlds
Inference in graphical models has emerged as a promising technique for planning. A recent approach to decision-theoretic planning in relational domains uses forward inference in dynamic Bayesian networks compiled from learned probabilistic relational rules. Inspired by work in non-relational domains with small state spaces, we derive a backpropagation method for such nets in relational domains ...
متن کاملCharacter-based recurrent neural networks for morphological relational reasoning
We present a model for predicting word forms based on morphological relational reasoning with analogies. While previous work has explored tasks such as morphological inflection and reinflection, these models rely on an explicit enumeration of morphological features, which may not be available in all cases. To address the task of predicting a word form given a demo relation (a pair of word forms...
متن کاملCollective Classification with Relational Dependency Networks
Collective classification models exploit the dependencies in a network of objects to improve predictions. For example, in a network of web pages, the topic of a page may depend on the topics of hyperlinked pages. A relational model capable of expressing and reasoning with such dependencies should achieve superior performance to relational models that ignore such dependencies. In this paper, we ...
متن کامل1 Relational Dependency Networks
Recent work on graphical models for relational data has demonstrated significant improvements in classification and inference when models represent the dependencies among instances. Despite its use in conventional statistical models, the assumption of instance independence is contradicted by most relational datasets. For example, in citation data there are dependencies among the topics of a pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.08028 شماره
صفحات -
تاریخ انتشار 2017